Conformational switching of G-quadruplex DNA by photoregulation.
نویسندگان
چکیده
Native, self-assembling nucleic acid nanomachines that can walk, move, or rotate have been developed. Owing to their ability to form diverse secondary structures, for example, by the highly sequence-specific hybridization of complementary sequences, the hybridization of DNA and RNA through Watson–Crick H bonds, and the assembly of triplexes through Hoogsteen bonds, nucleic acids are ideal building blocks for the construction of nanodevices. Quadruplex architecture is a nucleic acid secondary structure that plays an important role in nanomachine research, particularly in the control of reversible folding and extension of the G quadruplex of DNA in the presence of external stimuli. Mergny and coworkers reported that a copper(II)-mediated structural switch with a flexible ligand could regulate the conformation of the G quadruplex. Nanodevices based on a quadruplex-toduplex-transition that rely on the use of single-stranded DNA as fuels have been shown to perform rotary movements. Among external stimuli, such as temperature, pH value, electrical-field strength, and molecular recognition, photoregulation is particularly advantageous for controlling movement and conformation. For example, photoregulation does not require any additional components and does not cause undesirable side reactions. Irradiation is an accurate and simple method, and the timing, location, and strength of light can be controlled readily. Moreover, photoregulation provides a clean source of energy and can be repeated many times without loss of efficiency. The introduction of a photochromic group into biomolecules, such as peptides, oligonucleotides, sugar scaffolds, and phospholipids, can cause conformational changes that alter the photochemical properties of the biomolecule. Accordingly, various biological processes involving modified biomolecules can be regulated in a straightforward manner by irradiation. Recently, Ogasawara and Maeda demonstrated the successful photoregulation of G-quadruplex formation through isomerization of a photochromic nucleobase, G, incorporated in aptamers. Spada and co-workers introduced a photoactive moiety at the C8 position of a lipophilic guanosine derivative to regulate the existence of G quartets. However, all these photocontrollers are photochromic modified nucleobases. Specific molecules have not been shown to function as G-quadruplex photocontrollers; thus, we became interested in designing a photoswitch to regulate the formation of G-quadruplex DNA. The azobenzene moiety is widely used as a photoresponsive molecular tool because it possesses excellent photochemical characteristics. Specifically, azobenzene isomerizes to predominantly trans and cis forms under visible (Vis) and ultraviolet (UV) light, respectively. In this study, we synthesized the azobenzene derivative 1 (Scheme 1) to control the movement and conformation of a G quadruplex by irradiation. Our results suggest that the formation and dissociation of G-quadruplex DNAwas induced by interconversion of the trans and cis forms of compound 1. Compound 1 was synthesized by treating 4,4’-dihydroxyazobenzene with 1-(2-chloroethyl)piperidine hydrochloride
منابع مشابه
Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure.
We herein report the real-time observation of G-quadruplex formation by monitoring the G-quadruplex-induced global change of two duplexes incorporated in a DNA nanoscaffold. The introduced G-rich strands formed an interstrand (3 + 1) G-quadruplex structure in the presence of K(+), and the formed four-stranded structure was disrupted by removal of K(+). These conformational changes were visualiz...
متن کاملK(+)-Responsive off-to-on switching of hammerhead ribozyme through dual G-quadruplex formation requiring no heating and cooling treatment.
Functional RNAs that switch their activities in response to K(+) may sense the intracellular (100 mM) and extracellular (5 mM) K(+) concentrations and regulate their functions accordingly. Previously, we developed a quadruplex hammerhead ribozyme (QHR) whose conformational change, from a duplex to a G-quadruplex, triggered by K(+) results in expression of the activity. However, this QHR require...
متن کاملIon-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis
We recently reported that a guanosine-rich 40-mer DNA aptamer (LJM-3064) mediates remyelination in the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. Here, we characterize the G-quadruplex forms of this aptamer in vitro, and demonstrate using circular dichroism spectroscopy that LJM-3064 undergoes a monovalent ion-dependent conformational switch. In the presence of ...
متن کاملCorrection: Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions.
Human telomeric G-quadruplexes have raised broad interest not just due to their involvement in the regulation of gene expressions and telomerase activities but also because of their application in nanoarchitectures. Herein, three azobenzene derivatives 1-3 were synthesized with different substituent groups and their photo-isomerization properties were investigated by UV/Vis spectroscopy. Then c...
متن کاملThe systematic approach to describing conformational rearrangements in G-quadruplexes
Conformational changes in DNA G-quadruplex (GQ)-forming regions affect genome function and, thus, compose an interesting research topic. Computer modelling may yield insight into quadruplex folding and rearrangement, particularly molecular dynamics simulations. Here, we show that specific parameters, which are distinct from those commonly used in DNA conformational analyses, must be introduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 49 31 شماره
صفحات -
تاریخ انتشار 2010